IN THIS ISSUE:

THE COLLEGE LEARNING LABORATORY
CRAYTON BUCK
BART A. TOSTO

HUMAN SUBJECTS PROTECTION: GUIDELINES FOR LABORATORY SCHOOLS
ROY CREEK

THE LABORATORY SETTING: A MODEL FOR MENTORING AND REFLECTING TEACHING
JUDITH HECHTMAN

DEVELOPMENT OF THE PENNSYLVANIA CONSORTIUM OF LABORATORY SCHOOLS
ELENE S. DEMS

DASH - IMPLEMENTATION AND LOCALIZATION: A COOPERATIVE VENTURE BETWEEN THE SCHOOL DISTRICT, LABORATORY SCHOOL, AND UNIVERSITY
JACK E. FLETCHER

AN INTERDISCIPLINARY APPROACH TO TYPING INSTRUCTION IN THE ELEMENTARY GRADES
GAIL WICKERSHAM
CAROLEE SORMUNEN

AN ECOLOGICAL INVESTIGATION OF THE WORRIES OF FOURTH GRADE BOYS AND GIRLS
LELLA THERESA GANTI BONDS
CHARLES W. BONDS

VOLUME XIV NO. 2
WINTER 1980
Acknowledgement

The National Association of Laboratory Schools gratefully acknowledges the provision of support for the NALS Journal for one year by the Alexander D. Henderson University School, Florida Atlantic University, Boca Raton, Florida. This grant is made possible because of the Alexander D. Henderson School’s association with the Henderson Foundation, a part of the Florida Atlantic University Foundation. The NALS Journal appreciates this support very much.
NATIONAL ASSOCIATION
of
LABORATORY SCHOOLS
JOURNAL

The NALS Journal is supported financially by
the Alexander D. Henderson University School
Florida Atlantic University, Boca Raton, Florida.

Dr. Robert C. Hymer, Editor
NALS Journal
Dean's Office
College of Education
Jacksonville State University
Jacksonville, Alabama 32225

Dr. Mina Rayne
Associate Editor
University of Wyoming

Dr. Alvin Fabre, Jr.
Past President and Associate Editor
Louisiana State University

Dr. Barbara Bittner
Associate Editor
Florida Atlantic University

Dr. Katherine Knighten
Associate Editor
Ball State University

Dr. Leon Book
Associate Editor
Southeast Missouri State University

Dr. Gregory Ulm
President and Associate Editor
Indiana State University

VOLUME XIV NO. 2
WINTER 1990

© January 1990, National Association of Laboratory Schools
CONTENTS

OFFICERS & EXECUTIVE BOARD MEMBERS .. iv

FEATURE

The College Learning Laboratory
Crayton L. Buck & Bart A. Testo ... 1

OPINION

FUNCTIONS OF LABORATORY SCHOOLS

Human Subjects Protection: Guidelines for Laboratory Schools
Roy Creek ... 14

INNOVATION

TEACHER EDUCATION

The Laboratory Setting: A Model for Mentoring
and Reflecting Teaching
Judith Hechtman .. 22

FUNCTIONS OF LABORATORY SCHOOLS (COLLABORATION & NETWORKING)

Development of the Pennsylvania Consortium
of Laboratory Schools
Elene S. Demos .. 34

CURRICULUM

DASH - Implementation and Localization:
A Cooperative Venture Between the School District,
Laboratory School, and University
Jack E. Fletcher .. 40

RESEARCH

TEACHING TECHNIQUES

An Interdisciplinary Approach to Typing Instruction
in the Elementary Grades
Gail Wickersham & Carolee Sormunen 45

STUDENT GROWTH & DEVELOPMENT

An Ecological Investigation of the Worries
of Fourth Grade Boys and Girls
Lella Theresa Gantt Bonds & Charles W. Bonds 52

INFORMATION FOR CONTRIBUTORS AND SUBMISSION REQUIREMENTS.... Inside Back Cover
NATIONAL ASSOCIATION OF LABORATORY SCHOOLS

OFFICERS

President.. Dr. Gregory Ulm
Indiana State University

President Elect... Dr. Mina Beyne
University of Wyoming

Past President.. Dr. Alvin Fabro, Jr.
Louisiana State University

Executive Secretary... Mr. John Johnson
Indiana University of Pennsylvania

Recording Secretary.. Mr. James Fox
Louisiana State University

Editor of NALS Journal... Dr. Robert C. Hymer
Jacksonville State University, Alabama

Editor of Newsletter... Dr. Judith Rechtman
Indiana University of Pennsylvania

EXECUTIVE BOARD MEMBERS

One-year Term 1988-89 ... Dr. Russell Ames
University of Illinois, Urbana

... Dr. Loretta Krause
University of Hawaii

... Dr. Sandra Tsurutome
Florida Atlantic University

Two-year Term 1988-90 .. Dr. Roy Creek
University of Pittsburgh

... Dr. Patricia McDonald
Minot State University

... Dr. Kenneth Miller
Ball State University

Three-year Term 1988-91 ... Dr. Barbara Bittner
Florida Atlantic University

... Dr. Crayton Buck
State University College at Buffalo

... Dr. Ann Baldwin Taylor
Carnegie-Mellon University
FEATURE ARTICLE

Editor's Note: The Executive Board of the National Association of Laboratory Schools has authorized the inclusion of a feature article in each edition of the National Association of Laboratory Schools Journal. This article, which will be written upon invitation, will highlight one of the member laboratory schools and give a description of the school and its functions. The following article is one in this series:

THE COLLEGE LEARNING LABORATORY

Crayton L. Buck
Bart A. Tosto
College Learning Laboratory
Buffalo State College
Buffalo, New York

Introduction

The College Learning Laboratory is a research, development, and demonstration school operated by Buffalo State College. Under an agreement between the College and the Buffalo Public School District, it is also a component of the local magnet school integration effort and provides a sound, comprehensive educational program for the racially integrated and special needs population serviced. The school's fundamental mission is to function as a human resource laboratory for those collegiate academic and professional disciplines which utilize it to meet their respective program objectives.
The primary manner in which the CLL fulfills this mission is by establishing and maintaining a variety of instructional environments appropriate to the learning styles of children. This approach enables the CLL to provide for individual differences, implementation and demonstration of innovative programs, curriculum development, research, and exemplary practices. Through interaction with the college community and the community-at-large, the advancement of knowledge about children, teaching, and learning is encouraged and fostered.

Within its racially balanced population, the CLL has a component of special needs children from preschool through grade eight. Mainstreaming of a significant number of physically and mentally challenged youngsters is an integral part of the school's demonstration practice. Thus, the CLL reaffirms the value of placing children in the least restrictive environment. Additionally, through involvement in clinical teaching experiences, research, and curriculum development, the faculty nurtures learners, both children and neophyte teachers, in their quest for the knowledge and experience necessary for success.

The school is also committed to the intellectual, social, physical, and emotional development of children. This commitment recognizes the uniqueness and diversity of the population while fostering the belief that every child is inherently worthy of respect and has the right to develop as an individual. Consequently, the school's mission is accomplished by enabling children and college students to realize their potential and to develop an awareness of their responsibility as citizens in a changing, democratic society.
Function and Responsibilities

The College Learning Laboratory serves as a primary clinical teaching experience center for several Buffalo State College departments, including Elementary Education/Reading, Exceptional Education, Speech, Language and Audiology, and Educational Foundations. Students in the Art Education, Technology, Performing Arts, Food and Nutrition, and Secondary Education programs also place college students in the laboratory school. Those undergraduates enrolled in courses requiring a field experience component are assigned to individual CLL faculty members who serve as clinical teachers by ensuring that prospective teachers have an opportunity to master the objectives of the course. A close working relationship exists with the course instructor who communicates expectations to all concerned. During the clinical practicum component, the course instructor becomes an itinerant facilitator by conferencing with the prospective teachers and the clinical teacher.

Depending upon the sequencing of courses and the college professor, preservice teachers engage in 60 to 300 contact hours of clinical teaching experiences in the College Learning Laboratory. Because the goals set for students in pedagogical coursework are different from those for Student-Teaching, the College Learning Laboratory is not utilized for this activity.

In addition to the clinical teaching function, research, curriculum development, and demonstration functions are a vital part of the school's mission. Most research and curriculum development projects are initiated by college faculty from the State University College at Buffalo, a four-year senior college, or the University at Buffalo, a doctoral granting institution. Both schools are units of the State University of New York. The College Learning Laboratory involves its faculty members in the conduct of these activities and provides relevant population samples.
Taking the Initiative

Another important role function, characteristic of the CLL, is its ongoing development of program initiatives which are innovative, experimental, or nontraditional in nature. These projects may occur for short periods of time or, because of the outcome, assume an integral position within the school program. The most important ingredient in the success of these programs is faculty—either those in the laboratory school or members of the various college departments who are committed to and engaged in research activity.

Philosophy for Children Program

The Philosophy for Children course applies a multilayered, experientially-based approach to the teaching/learning process. This program utilizes a Deweyan format to explicate good teaching. The focus is to demonstrate how children's direct experience is a basis for their understanding of traditional subject matter while simultaneously having undergraduate education majors gain a sense of the practical experience of teaching. The operational mode requires that the undergraduate student acquire the philosophical content first. Then, he or she must translate this knowledge into projects, activities, or games representing problematic situations which children must solve practically. This enables the teacher/learner to reflect upon his or her own teaching processes. The emphasis on deductive logic and the syllogistic format is intended to assist children in application to their everyday lives.

Providing the neophyte teacher with the opportunity to translate theory into practice as part of the philosophy course is unique. It embodies sound principles of teaching under the guided supervision of a college teacher.
and master teachers in the classroom and effectively bonds the relationship between the preparation arm and the practicing arm.

Program for Head Injured Students

A recent initiative of the College Learning Laboratory has been its Program for Head Injured Students. Although society makes some provision for reintegrating into the school setting children who have suffered from traumatic brain injury, all too often exemplary educational models are not available. Many times, the child's behavior is quite different from pre-trauma conditions. This presents unique problems in the school reorientation process. The end result can be problematic and somewhat tenuous. Consequently, schools, teachers, and parents encounter difficulties in coping with the problems attendant upon the head injured which are not easily resolved.

The College Learning Laboratory has initiated a transition program designed to bridge the gap between the hospital inpatient/outpatient setting and the normal school situation. The CLL approach identifies such student deficiencies as attentional problems, noncompliant behavior, and awkward social functions. Then, instruction is focused on critical thinking, compensatory strategies, and social skills to help the student cope with various social, emotional, and educational situations. Regular discussion groups highlight not only real problems students encounter but also those related to their particular injury. These group exchanges constitute a crucial component of the CLL program.

In keeping with the school's philosophy and mission, the goal of the CLL Brain Injured Program is to assist the student's school district in the development of appropriate educational strategies for students returning to their regular instructional settings and to serve as a demonstration site
for local districts desiring assistance in establishing their own initiatives in this area.

Computer-Generated Individualized Educational Plans

By developing and experimenting with unique approaches to instruction, laboratory schools maintain their positions on the cutting edge of educational innovation. The computer has become a significant, even vital, tool for designing strategies which foster effective learning among all types of students. No less vital is keeping abreast of rapidly expanding technologies and determining the extent to which teachers and administrators can best incorporate them into planning, diagnosing, and prescribing appropriate learning modalities.

For the last four years, the College Learning Laboratory has been involved in a project to place the power, speed, and flexibility of a computer network at the disposal of special education teachers legally responsible for creating their students' individualized educational plans (IEP). Working as a design and planning team, the exceptional education faculty, a computer systems' manager, and other ancillary personnel developed and streamlined data input templates and reports formats through which individualized educational plans can be developed.

After completing a short period of computer and network systems training, teachers are able to customize a learning program which meets the specific needs of individual students in their classes. Using the computer and an electronic database of over 44,000 educational and behavioral goals and objectives, special education teachers create a flexible and continually evolving matrix of learning experiences which reflect the unique strengths and limitations of their students. Stored in "libraries" or data files representing cognitive and affective domain areas, the goals and objectives
are quickly and easily transferred via a local area network (LAN) into an individual student file and a printed report generated.

As the blueprint for a child's school program, this IEP also provides concise and accurate information for parental and school district inquiries regarding progress and mastery, including Annual and Triennial Review, and data required by the school districts' Committees on Special Education. The computer network enables quick, accurate, convenient, and periodic updating of a student's IEP and ready access to the demographic and diagnostic information necessary for compliance with state and local reporting regulations.

Another important outcome of the CLL project has been the greater degree to which special education teachers are able to determine and evaluate the learning curve of their students. Because of the versatility of computer-generated IEPs, teachers are better able to carefully prescribe learning experiences which maximize success and ensure mastery geared to an individual student's special needs.

The project also provides opportunities for CLL faculty to develop unique curricula tailored to a specific area or instructional thrust. Teachers who need to design goals, objectives, and even activities for a special project or theme can access the computer network and its resident applications and compose related goals and objectives. This has already resulted in the addition of a science curriculum for special education students and a speech and language "library" of goals and objectives geared to the particular needs of identified students who receive this related service as part of their total educational program.

The IEP Project has spawned still another computer-based initiative at the College Learning Laboratory. A pilot project involving distance learning for learning disabled and At-Risk students is in its early stages.
of development. In conjunction with a Resource Room teacher, designated students are provided with computers, modems, and appropriate software to use in their homes. The students will have access to electronic mailboxes through which they communicate with their teachers, exchanging assignments and completed tasks that reinforce classroom instruction. Electronic "conferences" with parents, reinforcement of basic skills, computer literacy, and increased task commitment are just some of the projected benefits of this distance learning experiment.

The Writing Center

Another exemplary program established by the College Learning Laboratory is its Writing Center. Recognizing that the ability to communicate is central to the development of an educated person, the Center is designed to promote literacy through improvement of written expression. To ensure maximum exposure, the Center is located in a part of the school which is easily accessible to children from all segments of the school population.

The Writing Center offers a full range of instructional and tutorial opportunities which coincide with the needs of young writers. Tutoring, enrichment, remediation, and research assistance services are available for students as well as faculty and prospective teachers. Instructional designs include: (a) full class instruction in regular classrooms, (b) small group instruction, (c) fall and spring writing assessments for all students, (d) student-authored newsletter, (e) one-on-one tutorials on site or in respective classrooms, and (f) word processing and computer literacy.

Of special interest is the nature of the tutorial program for writers of all ages. Most of the tutors are seventh and eighth grade students attending the College Learning Laboratory. Generally, they work with younger children and provide supportive instruction in writing skills. There are, however,
cases where true peer relationships occur when the writer and the tutor are similar in age or grade level. The developmental nature of this program insures that the overall acquisition of writing skills by young children is substantive. The Writing Center provides the supportive environment necessary for children to work. The effect upon tutors who must demonstrate skill and competence is equally significant.

Another element of the tutoring program is the involvement of undergraduate English majors intending to become teachers. Their involvement is twofold: to work with children who are in need of assistance and to work with the tutors attending the school as a seventh or eighth grader. This opportunity for prospective teachers constitutes valuable field experiences rarely available to them.

Diagnostic/Prescriptive Team

The College Learning Laboratory student population is very diverse and heterogeneously drawn from a large urban area. A primary thrust of Buffalo State College and the College Learning Laboratory is in the area of special education. Students with handicapping conditions constitute about 25% of the population including learning disabled, mentally retarded, physically handicapped, emotionally disturbed, speech, and multiply handicapped individuals. However, other students experiencing academic difficulties require assessment for either classification as special education or to ascertain their educational profile. The CLL has a large number of students who are at risk, many of whom are in need of educational assessment to determine appropriate placement or curricular adjustments. The laboratory school faculty and administration assess the needs of these students through a specific process designed to gather stable data.
The Diagnostic/Prescriptive Team provides behavioral and academic assessments for students who are experiencing difficulties in the learning environment. The D/P Team is composed of ancillary personnel possessing unique expertise. All are experienced special education teachers. The team is broadly represented including a speech and language pathologist, a special education teacher, an educational diagnostician, and a math/reading specialist. Referral of students is initiated by the subject's teacher through the Coordinator of the D/P Team who is usually an administrator. At the initial case conference, available data is discussed and assignments made to gather additional insights. Once those responsible for assessment complete their work and prepare their reports, a team conference is set up. Those involved with the case examine all data and special information. The team decides a course of action which usually takes two forms: (a) either the subject is recommended for classification as a special needs student and referred to a local school district's Committee on Special Education, or (b) a plan is developed to modify the child's current educational program. Students in the latter category remain with their teacher(s) and are provided with a prescriptive program aimed at making their classroom experience more successful.

Educational Research

College Learning Laboratory faculty members are primarily involved in teaching. Though engaged in scholarly activity, it is not a primary thrust as is expected in a doctoral degree granting institution. Consequently, the nature of the research function of the College Learning Laboratory lies in doctoral dissertations (from universities in the area) and master's degree theses and projects. The school also engages in the piloting and field testing of curricular materials and experimental pedagogical techniques.
Over the last five years, the pace of ongoing research has quickened at the College Learning Laboratory. More and more, researchers, doctoral candidates, and those pursuing the master's degree are becoming aware of the laboratory school and are taking advantage of the unique opportunities available for conducting educational inquiry.

Those worthy of note here include "Story Grammar Structure Analysis and Length of Narratives in Reading Delayed and Non-Delayed Peers," and "The Relationship Between Reading Achievement, Auditory Discrimination Ability and Articulation Disorders," two Master's projects which drew upon the diverse yet balanced population of subjects to explore important educational issues. Other studies have run the gamut of topics from health matters to teacher-student interaction. Miriam R. Sobota of the State University of New York at Buffalo conducted doctoral research into the relationship between children's expectations and assertive behavior. Focusing on approximately 90 fourth and fifth graders from the regular classroom setting, this research explored issues relevant to the further development of assertiveness training for children.

A recently completed study was a dissertation by Abigail Strichartz, a graduate student, in the Department of Psychology at the University of Buffalo. The study, Lie's and Truth: A Study of the Development of a Prototype, examined concepts of lies and truth as they relate to roles of cognitive maturation and parents' childrearing styles. A sample of 108 students and their parents participated in the study. The students, in grades kindergarten through eighth grade, viewed a series of videotaped stories containing the elements of factuality, intent, and belief. Each student responded to target statements, labeling them a lie or truth and how much of a lie or truth it was.
The findings of the study reveal that younger children consider only whether or not a statement is factual in their lie/truth decision. Children of eight or nine introduce the element of belief into decision making. With increasing maturity, belief becomes more important and factuality becomes less important to the decision. By adulthood, belief is weighed more heavily than factuality with intent only a part of the decision making of the most mature adults.

The importance of this study lies in the judicial system's interest in the question of children's understanding of the difference between lies and truth. Understanding the differences provides insight into children's competence to testify as a legal witness.

Studies of this nature are quite often done utilizing similar research approaches. Currently, a study in process deals with student attitude toward AIDS and Alcohol: A Cognitive Approach to Decision Making. The sample involves nearly 500 children ages 6-13. Another interesting study, still in the writing stage, deals with a projective test: T-CRS (Teacher-Child Rating Scale). The T-CRS is intended to assist in the assessment of children with special needs. The purpose of the study involving nearly 300 College Learning Laboratory students is to develop normative data upon which stable judgments may be made.

Perspective and Conclusion

The successful laboratory school is able to adapt to the changing directions of the teaching profession, anticipated needs of the student clientele, and the goals and directions of the college or university to which it is associated. To be a viable factor in the teacher preparation effort, the laboratory school must step out boldly and explore uncharted areas of the educational frontier.
The College Learning Laboratory is committed to being a significant center for new programs, innovative teaching techniques, dynamic and forward-looking curriculum development, and effective integration of technology into the mainstream of educational reform and revitalization. As a laboratory school, it is uniquely qualified to take on the challenges of an increasingly complex society which makes such varied and complex demands on its educational institutions.

Author Notes

Crayton L. Buck, Ed.D., presently serves as the Director of the College Learning Laboratory at Buffalo State College. Bart A. Tosto is an Assistant Professor of Education with responsibilities as Computer Systems Manager and Audio-Visual Coordinator at the College Learning Laboratory.

Other staff members who made contributions to the content of this article include Margaret A. Forrester, Associate Director; Katherine D'Erasmo, Associate Professor; and Marc Jacobs, Assistant Professor.
HUMAN SUBJECTS PROTECTION:
GUIDELINES FOR LABORATORY SCHOOLS
Roy Creek
Falk Laboratory School
School of Education
University of Pittsburgh
Pittsburgh, Pennsylvania

Unlike other schools, laboratory schools are routinely involved in educational research. Whether the faculty conducts its own original work, works in cooperative research teams, or provides an environment where research can take place, every college or university affiliated laboratory school needs to have a policy for the protection of the human subjects who participate in the research projects that are conducted in the school. Because blanket parent consent forms may not satisfy the requirements for liability, risk, and informed consent, it is advisable for a laboratory school to have its own detailed set of guidelines and its own internal review board (IRB). The following suggested policies are sufficiently generic to be adapted for use in almost any laboratory school situation.

Guidelines for Administering the Policies

I. All applicants for enrollment are informed of the fact that the school is a campus laboratory school where children participate as subjects in experimental research.

A copy of policies and guidelines is included in the packets of admissions materials that are given to parents of prospective students. Parents
should be asked to sign a Parent Consent form indicating that they have read
the statement and are prepared to cooperate with the school within the estab-
lished policies and guidelines.

Informed consent means that the subjects, or their legal representa-
tives, voluntarily agree to participate, after having been informed, in lay
terms, of the purposes, procedures, and possible risks or benefits of the
research. For children, legal representatives are parents or those design-
nated to act in loco parentis.

Sample Parent Consent Form
SUBJECT: Participation of children in educational research studies

After reading the attached "Policies and Guidelines for Participa-
tion in Educational Research Studies," please sign this form and
return it to the school. The form will be placed in your child's record
folder in the school office. Thank you for your continued cooperation
in helping our school become one of the finest laboratory schools in the
country.

I have read the statement of Policies and Guidelines for Participa-
tion in Educational Research Studies and I give my consent to have my
child participate in educational research according to the "Policies and
Guidelines."

Signature

II. All requests for subjects are reviewed by the laboratory school's
internal review board (IRB).

Laboratory Schools seek to meet their obligations to the research com-
munity and society at large by contributing to the generation of new knowl-
edge. This obligation, however, is secondary to the schools' concerns for
the rights and safety of children who are in attendance. All requests to
conduct research at a school or involve children as subjects for research should be reviewed by an IRB. The committee serves to protect all human subjects who are involved in school-related research and to satisfy the requirements for informed consent.

Research requests fall into broad categories. The types of educational research activities conducted at most schools fall into an "exempt" category. A discussion of the concept of exempt research and an identification of exempt research activities are explained in the following section.

Exempt Research Review at 46.101(b) of the Code of Federal Regulations

A number of categories of research are exempted from federal regulatory requirements. Exempt research should be certified as such by an official independent of the investigator. If a department of another division of the University has designated an official to serve this function for its research, then this official should indicate his/her certification that a project is exempt through a letter to the IRB Chair, which the investigator can submit with his/her other material. Otherwise, the IRB should certify exemptions itself. The Chair of the IRB retains the prerogative to review decisions of other officials regarding exemption, but in such cases she/he will notify the investigator of any problems within a given number of working days of receipt of the submitted material.

Laboratory school IRB's might impose different kinds of responsibilities on the investigator depending upon the nature of the researcher's request. Requests to conduct research might typically include:

1. Requests to come to the school and observe classroom processes, teacher behavior or of children's interactions. These requests require no alteration nor interruption of classroom procedures. Investigators can be permitted to make their observations, and individual parent consent is not
solicited. A parent's signature on a general consent form should satisfy the requirements for informed consent. For example, a researcher might be interested in the intervention strategies experienced teachers employ to resolve conflicts between students. The researcher would be permitted to sit in the classroom and record exactly what the teacher did when conflict situations between pupils arose.

2. Requests that include instructional interventions that the school thinks would be beneficial to the subject. These submissions suggest strategies or content that amplify or enrich what the school is already trying to do. For example, if a researcher has formally identified a technique for teaching a concept in math that a number of children are having difficulty understanding, the school might help the investigator to identify those children and permit the study to proceed.

3. Requests to conduct controlled experiments that require an experimental group and a control group. Studies of this sort may compare instructional approaches, curricular content, or other experimental variables. Because direct intervention is normally required for the experimental group and the omission of that intervention is normally required for the control group, the IRB should require the researcher to obtain individual parent permission for participation of their child in studies of this type.

4. Requests to solicit from children information that is associated with their social, emotional, or personal reactions or circumstances. Non-cognitive data is needed in educational and psychological research. Periodically, schools receive requests from researchers to use children as the normal group against which they can measure extreme behavior. The IRB should require the investigator to obtain individual parent permission to have their child included in studies of this type.
5. Requests that fall outside of the above categories are unusual, and the IRB should require the researcher to obtain individual parent permission to have their child participate in these studies.

III. When the laboratory school IRB determines that individual parent permission is needed for a child's participation in a study, the researcher is responsible for obtaining that permission.

Researchers in the field of education and in the other social sciences seek to meet their obligations to their fields of study, the research community, and to society at large by contributing to the generation of new knowledge. When investigators conduct their research at a laboratory school, it is imperative that they understand that these obligations are secondary to the school's concern for the rights and safety of all human subjects who are involved in research. All researchers who are granted permission to work at a laboratory school or with school children have the following obligations:

A. Liability. Irrespective of how consent is obtained and whether or not subjects are placed at risks, no exculpatory language may be included through which the subject is made to waive any of his or her legal rights, including any release of the researcher from liability or negligence.

B. Risk. On rare occasions and in a very small number of studies, the question of physical, emotional, or educational risk presents itself. No circumstance should enable a school to permit research to be conducted that places human subjects at risk. Researchers must be fully responsible for making known to the school and to each subject any and all of the attendant discomforts associated with a study. The investigator is also required to make clear why the discomfort is essential to the study and why the information cannot be obtained in any other way.
C. Privacy. Data obtained directly or indirectly about school personnel and children are entirely confidential. Research reports are to be written in such form that anonymity is guaranteed. Individual permission to make public information about individual participants must be obtained from both the school and the participant.

D. Deception. There are occasions when a full disclosure of the research purpose and/or procedures will invalidate the study. Included in this type of research are studies which require deception. In cases of this kind, the entire burden of responsibility is upon the researcher. The investigator is required to make clear why the deception is essential to the study and why the information cannot be obtained in any other way. Procedures for debriefing deceived subjects are required; and with children, the deceptive strategy should be turned into some instructional advantage. The overall effect of deception need not be negative, and it is the responsibility of the researcher to provide adequate debriefing procedures. When deception is essential to the study, consent from individual parents must be solicited. If this cannot be accomplished in writing, the researcher may be required to make contacts in person or by telephone.

E. Informed consent. Although disclosure of a research study may be neither useful nor necessary, there are basic elements of information that are required for effective informed consent. The following elements of informed consent must be required of investigators who have received permission to conduct research at a school.

1. A fair explanation of the procedures to be followed and their purposes, including identification of any procedures which are experimental.

2. A description of any attendant discomforts and risks reasonably to be expected, if any.
3. A description of any benefits reasonably to be expected, either for the subject or for society.
4. An offer to answer any inquiries concerning the study.
5. An instruction that the individual is free to withdraw his or her consent and to discontinue participation in a project or activity at any time without prejudice to the subject.
6. An instruction that the individual is free to withhold his or her initial consent and not participate in a project or activity without prejudice to the subject.

IV. Research projects conducted by the school as part of its ongoing operation are reviewed by the school IRB.

Ongoing school sponsored research projects may continue for long periods of time and may have effects upon the school program. Projects of such scope should be viewed periodically by the IRB because of their possible impact on the school program.

V. The director of the school should periodically provide an updated list of approved research projects being conducted.

In order to keep the school parent group apprised of the extent to which the school is involved in educational research, the Director should provide an updated list of approved research projects that are being conducted at the school. The list might appear in a PTA Newsletter, which is mailed to all parents of school children, or another appropriate in-house communication.

Human learning is the focus of the research and development activities that are carried out in laboratory schools. The main objective of a research policy and procedures is to ensure protection of the rights and well-being of all human participants.
References

THE LABORATORY SETTING: A MODEL FOR MENTORING AND REFLECTING TEACHING

Judith Hochman
University School
Indiana University of Pennsylvania
Indiana, Pennsylvania

Introduction

The mentor-protege relationship is one of the key elements in inducting new teachers into the profession of teaching. The laboratory school provides a unique setting that can encourage and foster mentoring relationships.

The term mentor was derived from Homer's book The Odyssey. In the story Mentor was given the responsibility for guiding and counseling Telemachus, the son of his close friend, Odysseus, while he was off at war. Mentor "has come to mean one who helps guide a protege through a developmental process, whether that process be the transition from childhood to adulthood or from student to professional" (Bryoska, Jones, Mahaffy, Miller, & Mychals, 1987, p. 1). Because the success of this relationship is vital, it is important that the mentor and the protege have mutually consented to the match so that the relationship has every opportunity to blossom.

The University School at Indiana University of Pennsylvania (IUP), like many other laboratory schools, is a clinical setting which encourages active observation and participation. Freshmen are given the opportunity to observe and become involved in the classroom, and this type of involvement continues throughout the four years of college. This paper will focus on the unique mentoring relationship that has developed between the author and seven
students who became actively involved in the first grade classroom at the University School at various times from 1985 until 1989. Literature will also be reviewed that relates to this subject.

Background

Of the seven students, there are one male and six females. Five began working in the classroom as the result of a required freshman assignment. In each of those cases, the students demonstrated above average interest by surpassing the amount of time suggested to fulfill the course requirement. They each expressed the desire to spend many hours each week either working in the classroom or discussing educational issues during lunch, planning periods, or after school. Each of the students became involved at different intervals over the four years. With each addition, the new member would get to know each of the others. Often they began to spend free time together and scheduled classes together. They helped each other brainstorm for project and paper ideas and worked in teams to teach when possible.

Characteristics of Mentors

The literature cites a variety of characteristics that effective mentors possess. Erkut and Mokros (1984) described mentors as people who are competent, dedicated, accessible, open, autonomous, powerful, fair, trustworthy, motivated, and held in high esteem by others. It was also reported that good mentors are people-oriented, tolerate ambiguity, prefer abstract concepts, value their company and work, and respect and like their subordinates (Clawson, 1979). Alleman (1982) noted confidence, secureness, flexibility, an altruistic nature, warmth and concern for others, sensitivity to the needs of their proteges, and trusting in others as characteristics that were present in successful mentors.
Bryoska et al. (1987) characterized mentors as being teachers with experience "who have mastered their craft and are dedicated to promoting excellence in the teaching profession" (p. 6). They went on to say that mentors possess maturity, self-assurance, patience, and confidence in their knowledge and abilities. They called a mentor a good teacher who is skillful, understands curriculum, is able to transmit effective teaching strategies, is a good communicator and listener who understands that the protege may have a unique but effective teaching style, and is not overly judgmental about those styles.

Students are directed to observe laboratory school teachers because they are "master teachers" who are already established as competent, dedicated, autonomous, confident, secure, flexible, mature, sensitive, and self-assured. Many of the adjectives used to describe mentors are reflective of the personalities and styles of laboratory school teachers. What sets the mentor apart from others in a similar setting is an openness, an innate desire to be with and help people, and genuine concern and respect for the college students who interact in this setting. Initially, it is necessary to spend time getting to know them and making them feel comfortable and welcome in the classroom setting.

Roles of Mentors

In order to help others to reach self-actualization, the mentors must assume a variety of roles in their relationship with the protege. But, as Gladstone (1987) pointed out, the role of the mentor is not a clear-cut one. One reason for this is because of the highly individualistic nature of needs and resulting relationships that develop between the mentor and the protege. The literature supports both possible and necessary roles that have been associated with mentoring. Anderson & Shannon (1988) described the functions
of mentors as being that of role model, teacher, sponsor, encourager, counselor, and friend. They described the functions as conjunctive because mentors must be ready to demonstrate any or all of them as the need arises. As teacher, the mentor must be ready to model, to inform, to confirm or to disconfirm, to prescribe, and to question. As a sponsor, he or she must protect, support, and promote. The role of encourager requires the mentor to affirm; to inspire, and to challenge. The counseling role involves listening, probing, clarifying, and advising. The friend accepts and relates to the protege. Gehrke (1988) posited that in order for mentors to assume these roles, they must be "more mature, more advanced, or more experienced--not a peer" (p. 43).

Gehrke & Kay (1984) did a study based on Schien's (1978) classification of eight possible mentor roles. Their findings showed that proteges saw mentors as teachers most often followed by confidant, role-model, developer of talent, sponsor, door-opener, protector, and successful leader.

The Mentor Teacher Handbook (Bryoska et al., 1997) expanded on the idea of role model and explains that it is more than being a demonstration teacher. For their purposes, it includes the mentor's ability to demonstrate professionalism, the ability to get things done within the approved guidelines set by the school, the ability to solve problems through realistic means, and the ability to exhibit positive self qualities such as enthusiasm, energy, and self-confidence. As this type of model, mentors demonstrate the qualities mentioned in the characteristics section. For example, they demonstrate a commitment to student growth and development or model commitment to professional growth by having and utilizing a personal and professional development plan.
Bryoska et al. (1987) indicate that mentors often provide direct assistance in developing the craft of teaching. They help the protege to develop a professional growth plan which includes competencies that need improvement as well as an assessment of skills already mastered. In addition, the mentors can help the protege to diagnose students' learning styles and individual needs. It may be useful to provide examples of unit plans or course syllabi or to show new methods, materials, or resources to their proteges. Since mentors are not expected to be omnipotent, it is also important that they identify other resource people for their proteges.

According to Gray and Gray (1985), preparation and teaching of demonstration lessons, so that beginning teachers can observe the correct use of a strategy, technique or skill, was one of the more important functions of mentors. Bryoska et al. (1987) suggested a three-step approach to this activity. It consists of a brief preconference to identify the goal of the lesson to be observed and pointers on what to look for, the actual demonstration/observation, and a postconference to review and analyze the presentation and set up an opportunity for the protege to practice the new skill.

The logical result of this procedure would be a sequence of observation and feedback. The preconference, observation, postconference have already been modeled for the protege. This is shown in the research of Joyce and Showers (1982) which concluded that formal observation and feedback are an effective way to improve instruction.

The mentor has the responsibility to help the protege to move from a level of dependence on the mentor to a level of self-direction. Gray and Gray (1985) developed a model that demonstrates how this can be achieved. One example of this process shows the feedback loop as it would operate in a
situational leadership role. Initially the mentor (M) tells the protege (P) what to do; next M sells P on what to do; M invites P to joint participation; M delegates to P and supports; and finally P is self-directed (p. 41).

According to Gray and Gray, as these final stages are evolving, it is essential that the mentor help the protege to produce a professional development plan. Activities related to this role involve: (a) the sharing of views related to career options, (b) helping the protege to become involved in professional activities and projects that will help to improve his or her professionalism, (c) sharing the mentor's personal plan with the protege, (d) helping the protege to set realistic short- and long-term goals, and (e) serving as a reference for information regarding continuing education and certification.

Often mentoring is something that certain people have been doing informally for much of their lives. In high school, it might take the form of helping a younger student adjust or solve a problem. College sororities and fraternities have been using the system of big sister/brother and little sister/brother for years. Often teachers with experience help newly hired teachers informally. They remember how it felt to be new, and they try to make someone else's transition period a smooth one.

At the University School of IUP, faculty members are encouraged to develop any special interests that they have. As a result of this support, the author has taken the opportunity to turn an interest in mentoring into a way to help a number of students make a firm commitment to elementary education and have positive initial experiences with the teaching profession.

In order to be an effective mentor, it is important to get to know the students by taking the time to talk to them and learn about their classes and their expectations. If a relationship is to develop, it is helpful to
encourage the potential protege by encouraging him/her to do something extra in the classroom. Often sharing resources is a helpful way to get the relationship started, particularly when potential proteges are enrolled in methods classes.

As a result of this type of nurturing and assistance, the seven students became involved in the first grade classroom. They all share an enthusiasm about teaching and a strong desire to work with children on a more regular basis than they could have if they just fulfilled the requirements set by their methods teachers.

An important part of the relationship is based on confidence and trust. Each of these students is comfortable talking about personal matters. They recognize and respect maturity and experience and are often more comfortable talking to an adult who is perceived as a friend rather than a parent.

Initial contacts are important. As students, many of them have faced scheduling problems. A personal call to a professor is often all that is necessary to get them into a required class. At those times, students have worked twice as hard in those classes in order to show their appreciation.

Placement for prestudent teaching is another critical developmental step. Diverse experience is necessary if the students are to have the edge in a competitive job market. Choosing to student teach in the first grade makes experience in an intermediate grade a necessary prerequisite for prestudent teaching. A conference with the coordinator of the Junior Block prestudent teaching experience assured suitable placement in an intermediate grade in a local public school setting for each of the proteges.

Sharing personal goals and academic interests can be an important function. It strengthens the position of role model, and it also helps them to develop clear ideas about how they could like their careers to proceed. As a
result, several of them have begun to share an interest in science education. They have applied for and been accepted into a special pilot program that is held for three weeks during the summer.

So far, two of the seven have decided to pursue master's degrees in Elementary Science Education. In each instance, they got the initial interview early as a result of the author's recommendation. In each case, as a result of their training and confidence, they were able to impress the interviewer with their qualifications. They were both accepted and offered assistantships that involved scholarships and stipends.

One protege, who came as the result of a student teaching assignment, was the least confident as her senior year ended. She realized that she was not at an independent level, even at graduation, and elected to substitute for one year in her home school district. The additional experience gave her the confidence to pursue a teaching position in another state the following year. New certification regulations in Pennsylvania have prompted a third protege to enter graduate school immediately after graduation. She also received an assistantship.

Three of the seven proteges are still taking undergraduate courses. One of the students was student teaching in 1989, while the other three continue to volunteer their time and teach lessons periodically. When they have time between classes, they quietly slip into the classroom and begin to assist whoever is teaching.

A Clinical Setting for Reflective Teaching

Schon (1983, 1987) is widely known for the use of such terms as reflective practicum and reflection-in-action. A reflective practicum is "aimed at helping students acquire the kinds of artistry essential to competence in the intermediate zones of practice" (1987, p. 18). Reflection-in-action is
described as "learning by doing and developing the ability for continued
learning and problem solving throughout the professional's career" (1987,
book jacket). The laboratory school has the potential for becoming a reflec-
tive practicum. It is a clinical setting with many possibilities.

Yinger (1987) said,

Learning how particular methods and activities interact with particular
learners in particular settings can only be achieved by actual teaching
experience. A language of practice is developed as teachers learn the
range of variation in students, the particular efficacy of technique,
and the boundaries of classroom social systems. Experience provides
particular knowledge about what works and about what forms of thought
and action best fit one's style of teaching and learning . . . Learning
by doing . . . often takes the form of acting, observing outcomes, and
then modifying the action for next time. This paying attention to
action is a reflective process and can be facilitated in a number of
ways. For instance, writing in the form of personal journals or written
narratives has been shown to be powerful means for promoting teacher
insight and development (e.g., Yinger, 1985; Connelly & Clandinin, in
press). Dialogues with other teachers, both beginners and experts, can
also be extremely productive. (p. 90)

Each of the seven proteges has had the opportunity to teach in a reflec-
tive style. As they learned about a technique in a methods class, they were
encouraged to try it in the classroom with a group of children. They could
fuse theory and practice.

Lunchtime has provided the students with the opportunity to talk with
each other as well as a variety of experienced teachers. It is a time when
there has often been a refreshing exchange of ideas. It has been helpful to
all who are involved. The teaching associates, doctoral students who teach 25 hours per week, regularly marvel at the ideas picked up from the undergraduate students. It is through them that recent trends, that have been discussed in a methods class, are learned.

As each of the students takes a turn at student teaching, a fresh approach is introduced to the classroom because they each have a slightly different personality and style. Early on, they know that when it is their time, they will be encouraged to be unique. They will not be expected to step into anyone else’s shoes. The mentor takes on the role of consultant and helper. Consequently, the students take on a tremendous amount of ownership. They plan themes and take charge of decorating and arranging the room to suit themselves. They are ready to lead the way.

Their ideas are discussed, and resources are provided to help them plan lessons. They have learned and practiced the notion of envisioning each lesson prior to teaching. They reflect about what they will need, about the steps involved in the actual teaching, and about possible questions that will come up during their presentation. After teaching, they discuss the lesson and reflect about ways to refine it.

Each of them keeps a journal. It is a helpful way to reflect about not only each lesson but also thoughts and feelings that pertain to teaching.

Conclusion

A close association with college students can be a mutually rewarding experience. The students in this group were typical academically. Their GPAs ranged from a 2.8 upward. Their enthusiasm and clinical knowledge consistently ranks 4.0. By graduation, they develop into self-assured professionals. They have set career goals, both short term and long range. They pursue those goals enthusiastically and tirelessly. They have been empowered with the knowledge and the skill to be successful in their future as educators.
References

DEVELOPMENT OF THE PENNSYLVANIA
CONSORTIUM OF LABORATORY SCHOOLS

Elene S. Demos
Edinboro University of Pennsylvania
Edinboro, Pennsylvania

Introduction

This article describes the development of a vehicle for communication of research, personnel, programs and collaboration among laboratory schools in Pennsylvania. This effort was designed by laboratory school directors within the state and was funded by the State System of Higher Education (SSHE) Faculty Professional Development Council.

Organizational Efforts to Date

Historically, Pennsylvania has been a leader in teacher preparation; and laboratory schools have been a central focus for development, demonstration, and experimentation of new curricula, models of teacher preparation and research related to learning. The current teacher reform efforts and concentration on collaboration and clinical models of instruction have stimulated discussion and interest among laboratory school directors for the development of THE PENNSYLVANIA CONSORTIUM OF LABORATORY SCHOOLS.

A similar effort for organizing the laboratory schools into a consortium was instituted during the decade of the seventies. Budgetary problems and retrenchments within the state prevented the organization from developing. Most laboratory schools were concerned with survival, not collaboration, research, development, or sharing expertise.
Since August of 1987, the Laboratory School Directors and faculty members have been conducting lab school visitations and discussions of individual school policies, procedures, curriculum, and focus. The discussions have been productive, and the interchange has resulted in a commitment to work cooperatively among the lab schools on research and development activities in the areas of curriculum and teacher preparation. The establishment of a formal network would allow for continuous, planned interaction among the units that can only enhance teacher education within the SSHE and provide for joint projects for the acquisition of outside funding for research and development activities.

The Laboratory School Directors at Edinboro University, Slippery Rock University, and Indiana University have met informally on three occasions; and discussions with Millersville University and Shippensburg University have indicated both a need and willingness to participate in the Consortium. The laboratory school representatives have concurrently expressed the desire for including representatives from schools that do not have laboratory schools. The rationale for inclusion of others stemmed from the importance of the observation/participation phase of clinical training. The lab schools are in a position to videotape and audiotape demonstration teaching and learning lessons, strategies, methodologies, language interactions, and provide these materials to universities for teaching and research purposes. These activities, or others identified by nonlab school members, could provide invaluable training opportunities for all SSHE institutions.

First Year Activities

A grant was submitted to the Pennsylvania State System of Higher Education to support the creation of a multidisciplinary association. The Pennsylvania Consortium of Laboratory Schools, to develop the network and continue
the dialogue among the laboratory schools. The grant allowed the process of development to continue and provided a focus for collaboration. To date, the group has presented several viable options for the future. The need existed for formalizing the Consortium and conducting in-depth discussion to determine the focus for organization and project activities. Without this focus and an action plan, the discussions, though helpful, could be less productive and amount to a series of meetings with no activity that would provide to the body of knowledge on teacher preparation.

The major activity in the first year was to establish the process and focus for the future. The grant provided for a two-day retreat to organize and define the activities of the Consortium. The specific objectives accomplished during the initial year were to:

1. Host a two-day retreat at Indiana University of Pennsylvania (the most central location).

2. Hire a consultant from the National Association of Laboratory Schools (NALS) to facilitate the process and development of the plan.

3. Prepare a Pennsylvania Consortium of Laboratory School Directory that would describe the thrust of each site and the activities of each that reinforce undergraduate and graduate teacher education program.

4. Identify a representative from each SSHE school that does not have a lab school and work with that representative to identify strategies for involvement with lab school sites. The Pennsylvania Department of Education prescribes that Level One and Level Two field experience students have experiences which illustrate practical applications of theory. Colleges not having laboratory schools could meet this requirement through activities such as research and videotaping of model experimental programs at each site.
5. Identify strategies for helping universities without lab schools establish centers within local school districts that they could utilize for demonstration, teaching, and research purposes.

6. Outline a series of videotapes that would be useful for nonlab school sites for inclusion in their teacher education programs.

7. Define the process for continued collaboration activities for the consortium.

As a result of the first meeting, several goals were identified for the group. First, the group wanted to continue having professional meetings which would allow for communication among the schools. Second, the group pulled together a resource booklet regarding faculty, support, mission, philosophy, common interests and unique aspects of each of the facilities. Third, the group agreed interest groups within the organization would allow each individual to pursue their identified areas of interest with others.

Year Two Activities

A second grant was submitted to and funded by the Pennsylvania State System of Higher Education. The current teacher reform efforts and concentration on collaboration and clinical models of instruction, along with increased numbers of freshmen in teacher education, provided continued rationale for utilizing laboratory schools and providing maximal opportunities for Level One and Level Two field experience sites.

The project will allow the process of development and collaboration to continue. One of the priorities identified in the initial proposal and supported by the Consortium was the development of videotapes and audiotapes of demonstration teaching and learning sessions, strategies, methodologies, and language interactions. These tapes would be made available to all universities in the SSHE.
Funding was needed for the organization to provide consultation to the Consortium to identify and briefly describe the series of videotapes and to develop a prototype for the tape series. Such topics as story boarding, scripting, developing content and process will be dealt with; and Consortium members will identify their areas of expertise and strategies for completing the respective tapes. During the scheduled two-day retreat, the specific objectives are to:

1. Conduct individual presentations of laboratory schools in the state, highlighting each school’s philosophy, mission, scope, faculty, research agenda, and Consortium involvement.

2. Hire a technical consultant to work with Consortium members to assist with prototype development.

3. Prepare a prototype for the videotape series to be developed by the laboratory schools.

4. Identify and briefly describe the tape series. To date, discussions for the tape series have focused upon such topics as whole language instruction, integrating computers in the classroom, math and science in the elementary school, classroom management, and early childhood strategies. Each lab school will select one or two areas for development that focus upon its expertise. For example, Edinboro University will focus on Whole Language strategies, Indiana University will focus on science and math, and Slippery Rock will focus on handicapped students and behavior management.

5. Develop marketing and distribution strategies.

6. Develop timelines and discuss grant opportunities for the production of professional caliber tapes.

7. Continue dialogue and develop strategies to work with teacher education programs which do not have laboratory schools.
Summary

The impact of the Consortium can be extensive within Pennsylvania. Laboratory schools must continue to meet and network to address their needs within the state, region, and nation to enhance teacher education programs. Members of the Consortium feel positive about the ties created and the operation of this network. The Consortium will continue to seek funds and has met with other state agencies to discuss future collaborative efforts that will enhance research and development activities as well as teaching opportunities and faculty development opportunities.

A great deal of planning has gone into the Pennsylvania Consortium of Laboratory Schools. This planning must continue and be further extended to ensure the group’s survival and impact into the 1990s.
DASH - IMPLEMENTATION AND LOCALIZATION:
A COOPERATIVE VENTURE BETWEEN THE SCHOOL
DISTRICT, LABORATORY SCHOOL, AND UNIVERSITY

Jack E. Fletcher
Eastern Washington University
Cheney, Washington

In the Summer of 1988 the Cheney School District agreed to pilot an
elementary science curriculum entitled Developmental Approaches in Science
and Health (DASH) written at the University of Hawaii, Manoa.

The essence of the agreement was as follows:
1. The program would be at the K-1 level.
2. The teachers would be volunteers.
3. The University of Hawaii would provide all printed materials.
4. The University of Hawaii would provide a one-week intensive workshop
for the volunteer teachers of the district.
5. The workshop would be held at Reid Laboratory School.

Cheney School District then approached Eastern Washington University to
obtain graduate credit for the 15 teachers involved. Two hours of graduate
credit was obtained for the summer workshop.

As the Science Educator, the author was asked to work with the dis-
trict and monitor the workshop. To get to know the teachers and to become
acquainted with the program and its philosophy, Pat Fletcher and the author
participated in and contributed whenever possible to the workshop. Pat
Fletcher worked with the kindergarten teachers; Jack Fletcher, with the
first grade teachers.
The teachers were experienced, and their ideas and applications never ceased. By the end of the week, excitement for the program was high. Continued participation and needs communicated by the teacher participants finally evolved into an inservice program for which graduate credit could be obtained for those wanting or needing it. It must be noted that not all teachers attending the inservice workshop took it for credit.

The university role at first was to assure that the inservice workshop would meet graduate level requirements. The teachers knew what they wanted and needed in their inservice course. They wanted to work through, evaluate, modify, rewrite for local use, and integrate subjects like social studies, math, and language arts into the DASH curriculum.

Each meeting teachers brought stacks of material on each DASH lesson. Each meeting was broken into three parts. The first was preparation for the phone call from Hawaii and the DASH writers. Stories of success, modification, integration, clarification, and, in some cases, help needed were all passed on by each teacher via speaker phone. This part of the program is becoming less significant.

The second part of the inservice is devoted to each grade and teacher sharing their written ideas, comments, etc. with each other.

The third section consists of going over the master calendar of parts of clusters to be taught in ensuing weeks between meetings, and anticipated materials needed.

The teacher enthusiasm about the program and the inservice sessions enlarged the role of the university. The authors began approaching the other departments as the inquiries for Master's Degrees increased. Teachers not having enough time in the inservice meetings to complete all the changes in curriculum wanted to incorporate DASH into their Master's Degree programs.
As of this date, Masters' have been started in Early Childhood Education (two), Science Education, and Music.

A graduate student in Curriculum Development is enrolled in the inservice course to learn firsthand about curriculum implementation, through its various stages, by working with the teachers. This student also summarizes and compiles the teachers' written remarks on each exercise and activity, creating a better understanding of curriculum modification.

At the university's undergraduate level, all elementary majors are required to take a block of courses that consist, in part, of Social Studies/Science Methods, and a hands-on laboratory class. They also spend ten hours weekly in the elementary schools, teaching a minimum of eight lessons.

In the Methods course, the DASH philosophy, scope and sequence and activities are examined within the session on new curricula. In the laboratory, several of the hands-on activities from DASH that are being taught in the schools that quarter are examined and carried out. Further support is offered since many of the DASH teachers receive the university students during the block, or later as student teachers. This also assures the school district that, upon graduation, these students could function within the DASH program, continuing it without expensive inservice programs having to be repeated.

Although the first year of the pilot program is not complete, the success of the program can be measured by the following outcomes:

1. Other districts are sending teams to visit Dash classrooms and talk with DASH teachers.

2. The Cheney School District Administration and teachers have decided to expand the K-1 program to grades 2/4 next year.
3. The only district school which had no volunteers in this year's (1988) program will have five participants next year, representing grades K, 1, 2, and 4.

4. Participants from the university have committed themselves to participate in and help direct this summer's teacher training workshop, as well as offer two hours of graduate credit for the workshop.

5. Graduate credit, two hours per quarter, will be available to the 2/4 participants this coming academic year for inservice.

The following diagrams present a successful University model through which a new curriculum can be introduced into the schools.

EASTERN WASHINGTON UNIVERSITY
Undergraduate

ED 340 - CLASSROOM EXPERIENCE
10 Hours/Week in Elementary Classroom, Minimum
4 Lessons Taught, Minimum
Raise an Animal

ED 339 - ELEMENTARY SCIENCE/SOCIAL STUDIES METHODS
DASH - Philosophy, Scope, and Sequence
Activities (Including Materials)
Calendar

ED 337 - LABORATORY
DASH Exercises
Raise an Animal
AN INTERDISCIPLINARY APPROACH TO TYPING
INSTRUCTION IN THE ELEMENTARY GRADES

Gail Wickersham
Burris Laboratory School
Carolee Sormunen
Ball State University
Muncie, Indiana

A long ten years ago, an innovative elementary teacher would have been thrilled to have one computer that was loaded with cassettes in the classroom. Now some elementary teachers want computers for each student in the classroom, as well as printers.

When elementary classes first started using computers, students used programs requiring one- or two-finger responses or learned programming language BASIC. Now word processing is much more a part of the elementary curriculum.

Laboratory schools offer the opportunity to work professionally with faculty from many disciplines. A faculty member from Ball State's College of Business, Dr. Carolee Sormunen, and a committee of business and elementary educators had just concluded a national study of instructional practices and perceptions of elementary school teachers about typewriting/keyboarding and expressed interest in how elementary students in the laboratory school were learning the keyboard.

1This study is available from the national office of: Delta Pi Epsilon, Box 4340, University of Arkansas, Little Rock, AR 72214
According to the national study, if elementary students are learning the keyboard by the touch method it is usually being taught by elementary teachers. The most frequently used procedure by the teachers in this study was "explaining verbally how touch typing should be done, including correct hand placement and keystroking." Computer software was determined to be the most common type of instructional material. The respondents in her study indicated that need for additional contact time was the major concern that should be addressed to make these programs more effective (Sormunen, Adams, Berg, & Prigge, 1989).

Mandated curriculum requirements, in many states, may make developing a program for keyboarding skills in the elementary grades difficult (Sormunen et al., 1989). In addition, some teachers feel there is already a full work day, and additional subject matter is not viewed as reasonable.

The desire to use word processing capability of microcomputers to achieve the integration of the computer into the curriculum means using the computer efficiently. According to West and Sabban (1982), this necessitates typing skill of approximately 20 to 25 words per minute because students go from the first stage of typing skill to the second more integrated and smooth level at this range. Sormunen's study (1986) leads to the conclusion that at least 30 hours of instruction is necessary for most students to achieve the second level speeds in the low 20s.

One way to provide additional time for keyboarding in the elementary curriculum is by combining keyboarding practice activities with required subject matter. Of the mandated requirements in elementary schools, integration with language arts seems to be the most viable choice. Therefore, an interdisciplinary approach, using typewriting skill development techniques
and appropriate language arts content, may be one answer to providing opportunities for students to obtain keyboarding skill development.

Therefore, the problem of this study was, "What is the effect of using an interdisciplinary approach to develop typewriting/keyboarding skills of students in the elementary grades?" The purpose was to examine one way to integrate keyboarding skills into the elementary school curriculum so that students will have enough time to develop higher levels of speed achievement than can be expected in the short periods of time currently being used.

Methodology

A pre-experimental one-group pretest-post test design (Campbell & Stanley, 1963) was selected because of time and equipment constraints. A discussion of the subjects, apparatus, and procedures follows.

Subjects

Participants in the study were students in a laboratory school during the school year 1987 who had just completed either grade three, four, or five. These students enrolled in a four-week summer session on the microcomputer and were provided with 30 hours of activity directly related to keyboarding skill development and language arts subject matter. Composition of the group under study was 15 males and 8 females; 5 students had completed grade 3, 9 had completed grade 4, and 9 had completed grade 5. Of the students, 61% indicated that there was a microcomputer in their home.

Apparatus

The software tutorial, Microtype: The Wonderful World of PAINS (Haugo, Hausmann, & Jackson, 1985), was used to introduce the keys of the keyboard. After initial instructions about technique, posture, hand position, and stroking, students proceeded through the tutorial at their own pace. A
decision to proceed to the next lesson was guided by the teacher and the report generated by the software program at the completion of a lesson. As the students finished the tutorial, the open screen option of PAWS was used for selected assignments in Elementary Keyboarding (Crawford, Erickson, Beaumont, Robinson, & Ownby, 1985). The nontraditional materials consisted of a five-part lesson, as follows: a keyboard review for warm-up, practice words and sentences related to the language arts principle under study, timed writings that were also related to the language arts principle, an activity applying the language arts principle, and a composing activity in a sequential pattern of development. The composing activities began with one-word responses and ended with short articles for the class newspaper. Materials have been designed for students with these objectives in mind: (a) provide language arts principles by practicing with reading vocabulary and language arts activities, (b) develop keyboarding skill through building speed and decreasing errors, and (c) use the microcomputer as a writing tool.

Procedures

When all students completed the alphabetic lessons of PAWS, basic word processing functions such as save, edit, retrieve, and print were introduced. Instruction with the nontraditional skill development material was presented by the business teacher, who presented the skill-building activities, and the elementary teacher, who presented the language arts activities.

Two types of data were collected. First, pretest and posttest typewriting speed scores were taken using a specially designed program that counted all strokes made by the student. Timings were atypical. There were three 30-character timings administered. Timing began as the first key was struck and ended with the return at the end of the line. The speed score of each of the three timings was recorded, averaged, and reported as the
raw score. Second, the amount of time it took each student to complete the tutorial PAWS (Hauge et al., 1985) was recorded to provide guidelines in planning future instruction.

Findings

The amount of time to complete the PAWS program varied considerably. When the computer program indicated that a student should repeat a lesson, the teacher directed the student to repeat the lesson. The fastest student finished all 16 lessons in almost 6 hours; the slowest student took 17 hours.

Pretest typewriting speed scores ranged from 4 to 20 words per minute. The mean was 10.13 words per minute, and the standard deviation was 4.52.

The posttest typewriting speed scores ranged from 13 to 41 words per minute. The mean was 23.864 words per minute, and the standard deviation was 6.94. When comparing the results in this pretest-posttest design, there was a significant difference at the >.01 level.

Discussion

The results do support the idea that keyboarding skill can be developed using an interdisciplinary approach, since scores compare to results in other studies for similar periods of time (Kaser, 1984; Krevolin, 1965). Experiences that imply an effect on instruction and suggestions for future research follow.

Implications for Instruction

Based on these results, the possibility exists that keyboarding skills can be developed with textual materials that focus on subject matter such as language arts. In this case, the use of an interdisciplinary approach provided the opportunity for the business educator to select and implement an introductory program that was based on the psychomotor skill development

49
theory applied to typewriting/keyboarding instruction. From the perspective of the elementary educator, the materials were evaluated for age appropriateness. Nontraditional materials developed for this project blended each teacher's concern for keyboarding skill and language arts content respectively into a seemingly workable format.

Individual difference in completing the tutorial were far greater than anticipated by either instructor. Time of completion of the entire tutorial was almost triple from the slowest to the fastest student. While slower students were working to complete the lessons dealing with the alphabetic keys of the keyboard, the other students practiced additional lessons from a textbook. In a nonexperimental situation, a teacher might prefer to allow students to proceed into the language arts lessons and to accommodate individual differences by planning other activities related to the language arts principle.

The value of immediate feedback in the acquisition of a skill is important. One of the strengths of this method of learning language arts was the ability to provide immediate assistance to students. Whether feedback was requested by a puzzled student or was spotted on the screen by the team teachers, the corrective action was immediate.

Using a word processing program allowed the student to save data on a disk and print the lesson as requested by the teacher. After checking for errors, the papers could be returned for student correction without the laborious repetition of rewriting the entire activity. Student satisfaction was apparent when a corrected copy could be printed out. While no attempt was made to measure the quality or quantity of student compositions, it was apparent to both educators that students were enthusiastic in their comments about the writing assignments.
Implications for Future Research

The focus of this project was whether or not it was feasible to develop keyboarding skill with materials designed to teach language arts knowledge. The next step would be to determine whether language arts skills are effectivley taught using nontraditional materials. An additional question to investigate would be to compare the quality of compositions prior to the presentation of sequentially developed materials to those done after the student has been provided developmental experiences in composing.

References

AN ECOLOGICAL INVESTIGATION OF THE WORRIES
OF FOURTH GRADE BOYS AND GIRLS
Lella Theresa Gantt Bonds
Marvin Pittman Laboratory/Demonstration School
Charles W. Bonds
Georgia Southern College
Statesboro, Georgia

Introduction
To be fearful of unknown or unfamiliar situations is a universal inclination among all children and even carries over into adulthood. While these fears may seem irrational and exaggerated to those individuals not experiencing them, these emotions are quite realistic to the troubled person. When certain conditions or events induce fear and anxiety, an individual’s attempt to attain goals is hindered. The anxieties and fears of children are ever present, whether real or imagined, and can be observed daily in specific settings such as the school, home, and the neighborhood. Children may be observed exhibiting some of the symptoms of anxiety or fear when encountering novel situations or under stress. It is the consistent and inconvenient quality of fear, especially for young children, which generates troublesome effects. To a young child, management of his/her fears will determine personality adjustment, personality development, and the child’s ability to cope with anxiety, worries, or fears.

If boys and girls are to learn to cope with everyday anxieties, fears, and worries, then they must acquire methods of alleviating these daily occurrences. Since school comprises a major portion of their day, the classroom
can serve as the mechanism for helping children alleviate daily stress as it occurs.

What are Fears, Anxieties, and Worries

Fear, anxiety, phobias, and worry are difficult to define because of their varying degrees of indepthness. Each involves patterns of physiological and psychological reactions including unpleasant and stressful feelings and emotions. Some authorities and researchers use the terms "fear" and "anxiety" to mean the same thing or relate the terms to external elements. Craig (1976) notes that fears usually have specific sources, and anxiety is what people feel when stress is placed on them. It may be a feeling of apprehension, and the person may not know the precise origins. Anxiety, like fear, appears to be a response to a felt danger which may or may not be real. As noted by Ambrose (1975), anxious children may not be aware of what exactly is causing their worries. May (1977) states that Freud considered fear and anxiety as synonymous but preferred to use the term anxiety as it referred to perception of internal as well as external dangers.

What Research Says about Children's Fears

Many theories and reasons have been offered for causes of fears in children. Since so many children's fears are of objects or events that are far removed from daily lives, it is often hard to find their origins. However, some fears are linked to an actual event. A child who has been bitten by a dog may generalize his or her fears to all dogs (Jersild & Holmes, 1935). Parents sometimes instill fear in their children. Overprotective parents give their children the feelings that the world is a dangerous place, full of fearsome things (Hagman, 1932). Experiences, positive or negative, will determine a child’s fears. Lack of necessary food or shelter may elicit
fears of physical danger associated with poverty in low socioeconomic children, while fear of school failure may elicit fear in middle class children (Angelino, Dollins, & Mech, 1956).

Some authorities believe that children's fears or worries are developmental. As the environment becomes safer, as positive and negative events occur in their lives, and as their perceptions of their ecological settings expand, fears, worries, and anxieties tend to be modified. Some children's fears may disappear or dissipate while other children's fears continue to be exaggerated by influencing factors.

The years from two to six appear to harbor the greatest number of fears for boys and girls. By this age, children have a broader view of the world around them. They have heard frightening experiences told by others, either in real life, stories, or television. They are afraid of the dark, ghosts, witches, and of being left alone. They are also afraid of snakes and criminals (Jersild & Holmes, 1935). Young children are told to be aware of dogs because they bite and are warned not to talk to strangers. Wild animals are portrayed as vicious by television and movies. They learn that snakes are poisonous and not to be touched, and that the elements can be extremely dangerous. Some children in large cities fear outdoor play for fear that something dangerous will happen to them.

Though all children of the same age do not have the same fears, most preschool children will at sometime express fear of the following: the dark, animals, storms, separation from parents, death, imaginary visions or noises, strangers, policemen, burglars, and the grotesque (Jersild & Holmes, 1935). Five-year-olds begin role-playing and dramatizing all kinds of imaginary and fearful situations and seem to be afraid of very little. First graders bring about social and objective fears. The most commonly expressed fear of first
graders was that of animals. This fear decreases only around the middle elementary school years. Almost all five- and six-year-olds and more than one-half of nine- to twelve-year-olds claim that the things they fear are mammals and reptiles such as snakes, lions, and tigers. Maurer's (1965) investigation found that five- to six-year-olds possessed a universal fear of animals and that fear decreased sharply with age—from 80% of the five- to six-year-olds to 23% of those 13 and 14 years old.

Eme and Schmidt (1978) concluded from their study of 65 children that the three most common fears reported by fourth graders fell into three categories: (a) bodily harm, threat of injury apart from falling, or a painful event; (b) robbers, kidnappers; and (c) animals.

Orton (1982) conducted a study of children's worries to determine if fears changed over time. He sought to replicate the study of Pinter and Lev in which fear of failing a test was the most worrisome item. A comparison of the two investigations indicated that fear of failing a test was still the highest item on their survey.

There are mixed research findings regarding the number of fears and corresponding ages. Croake (1969) and La Pouse and Monk (1959) reported age to be a nondiscriminating variable. Hagman (1932) found a positive correlation between age and number of fears. This research review indicates that children experience many different kinds of fears. It also seems evident that fear is not just a passing stage, and fear of some things and objects have more impact on children than others.

The Research Investigation

Purpose of the Investigation

The purpose of the investigation was to examine the fears of fourth graders through the use of a survey questionnaire. The study sought to
determine the ecological perception of the fears of the subjects as related to three significant environments: (a) the home, (b) the school, and (c) the community.

Subjects

The subjects of the investigation were 56 fourth graders enrolled in a laboratory school of a south Georgia college. The population of the school is similar in racial composition and sex to that of the other schools in the system of which the laboratory school is an integral part.

Collection and Analysis of Data

Data were collected using a survey instrument which the respondents had to complete in writing. The survey requested the respondents to respond to nine questions relating to their ecological environment: (a) the home, (b) the neighborhood, and (c) the school. The questions were:

1. What do you worry about most at home?
2. What do you worry about sometimes at home?
3. What do you worry about least at home?
4. What do you worry about most in your neighborhood?
5. What do you worry about sometimes in your neighborhood?
6. What do you worry about least in your neighborhood?
7. What do you worry about most at school?
8. What do you worry about sometimes at school?
9. What do you worry about least at school?

Results were analyzed based on the students' responses to the questions.

Summary of the students' responses yielded the following results. The dominant worry of the home environment was death of a relative or relatives.
Natural phenomena, pets being harmed, being punished by parents, family illnesses, divorce, fighting, and personal body harm were also of concern. In the "Sometimes Home Worries," the principal worry was that of completing chores. Natural phenomenon was also the second major concern. Fighting with siblings was the third highest worry. "Least Home Worry" cited was the economy.

The dominant worry of the school environment for the majority of children was obtaining good grades and failing tests. Responses relating to social adequacy was indicated as the second most frequent worry. Under the "Least School Worry", not having pencils in school and staying awake were of little concern.

The worries of personal health, bodily harm caused by dangerous traffic, and personal health were combined to form the principal sources of fears in the neighborhood. Forced entry into homes by robbers was listed as the third greatest concern. The "Sometimes Neighborhood Fears" most often listed were fear of being harmed by animals and not having friends. The "Least Neighborhood Worry" was that of drugs and pets being harmed.

Conclusion and Discussion

The three most common worries reported by the subjects of this ecological investigation of fears in the school, home, and neighborhood fell into three categories: (a) grades and failing tests, (b) fear of relatives dying, and (c) fear of bodily harm caused by robbers and dangerous traffic. These results were similar to those of other investigators. Although the sample of this investigation is small, the fears expressed by the subjects appear to be representative of much larger samples.

While the teaching of basic skills continues to remain a central function of the school, another major goal should be to nurture both the learning
and development of all children, not only intellectually but emotionally. As teachers observe and work with children daily, knowing what elementary school children worry about most can aid in better understanding their students.

Although there are ways the home can help alleviate or reduce fear and worry, the school must continue an active role. Ivey and Sinek-Downing (1960) stated that the most effective approach that teachers could take is to teach anxious students how to relax. If children know how to relax, they will begin to solve their problems in daily living. This calm brought about through relaxation is extended throughout the school day and generalized to interactions in home and community, thus an ecological approach to alleviate stress and worry.

It is hoped that the elementary teacher will realize that the child's ecological environment—the home, the school, and the community—may produce situations of fear and worries. Only by making the ecological environment less stressful will children be able to function as emotionally secure individuals.

References

INFORMATION FOR CONTRIBUTORS

The National Association of Laboratory Schools Journal, a refereed journal, publishes articles that contribute to the knowledge and understanding of laboratory schools, as well as other significant educational issues. Most articles fall into one of these types: Research, Innovation, and Opinion. The subjects most often addressed are: Teaching Techniques; Administrative Concerns; Functions, History and Future of Lab Schools; Innovations in Curriculum & Program; Teacher Education; Student Growth and Development; and Philosophically Oriented Topics. Rebuttals, responses and reviews are also of interest. Although available space and a thematic approach limit the number of unsolicited manuscripts that can be used, submission of unsolicited manuscripts is encouraged.

SUBMISSION REQUIREMENTS

Length: All text—including title, headings, references, quotations, and tables—must be typed double spaced. Manuscripts should be typed on 8½" x 11" white bond, one side only, with references at the end of the article. The maximum acceptable length is ten pages including all references and supplementary material. The NALS Journal uses the latest edition of American Psychological Association (APA) format.

Submission: Send the original and six clear copies with a stamped, self-addressed 9½" x 12½" envelope with sufficient postage for manuscript return to: Dr. Robert C. Hymer, Editor, NALS Journal, Dean's Office, College of Education, Jacksonville State University, Jacksonville, Alabama 36265.

Manuscripts are accepted at any time. Articles which are accepted and cannot be used immediately are held for a future issue.

Editing: The NALS Journal reserves the right to make editorial changes in all manuscripts to improve clarity, to conform to style, to correct grammar, and to fit available space. Authors should send information concerning their titles, positions, laboratory school, and university names, locations, etc. However, titles and positions will not be printed with the article.

The Editors welcome suggestions from NALS members concerning ways in which the Journal can be improved.